Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580329

RESUMO

BACKGROUND: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS: We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRß (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS: The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS: In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Criança , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas/genética , Sangue Fetal , Receptores de Antígenos de Linfócitos T/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linhagem Celular Tumoral , Recidiva
2.
J Immunotoxicol ; 19(1): 125-133, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422989

RESUMO

Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.


Assuntos
Monócitos , Poliestirenos , Humanos , Poliestirenos/toxicidade , Ativação Linfocitária , Adjuvantes Imunológicos , Células Dendríticas
4.
CRISPR J ; 5(3): 435-444, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35686979

RESUMO

Immunotherapies targeting checkpoint inhibition and cell therapies are considered breakthroughs for cancer therapy. However, only a part of patients benefit from these treatments and resistance has been observed. Combining both approaches can potentially further enhance their efficacy. With the advent of gene editing techniques, such as clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9), the elimination of checkpoint molecules became available as an option in good manufacturing practice conditions to improve persistence and efficacy. However, no data of CRISPR-Cas9 application have been reported in cord blood (CB)-derived immune cells, potentially usable for allogeneic cell therapy purposes. In this article, we describe the optimization of a protocol to deplete checkpoint molecules at the genomic level using CRISPR-Cas9 technology from CB-dendritic cells (DCs) and CB-CD8+ T cells. The protocol is based on the electroporation of a ribonucleoprotein complex, easily translatable to clinical settings. In both cell types, the knock-out (KO) was successful and did not affect cell viability. CB-DCs showed a decrease in expression of the targeted protein ranging from 50% to 95%, while CB-CD8+ T cells showed a reduction in the range of 25-45%. The procedure did not affect the stimulatory function of the CB-DCs or the response of CB-CD8+ T cells (proliferation or TNF-α production). In conclusion, we optimized a protocol to eliminate checkpoint molecules from CB-derived DCs and CD8+ T cells, with the aim to further implement allogeneic cell therapies for cancer.


Assuntos
Edição de Genes , Neoplasias , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas/genética , Células Dendríticas , Sangue Fetal , Edição de Genes/métodos , Humanos , Neoplasias/genética
5.
Front Immunol ; 13: 1101999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685500

RESUMO

Introduction: Dendritic cells (DC) are crucial for initiating and shaping immune responses. So far, little is known about the functional specialization of human DC subsets in (local) inflammatory conditions. We profiled conventional (c)DC1, cDC2 and monocytes based on phenotype, transcriptome and function from a local inflammatory site, namely synovial fluid (SF) from patients suffering from a chronic inflammatory condition, Juvenile Idiopathic Arthritis (JIA) as well as patients with rheumatoid arthritis (RA). Methods: Paired PB and SF samples from 32 JIA and 4 RA patients were collected for mononuclear cell isolation. Flow cytometry was done for definition of antigen presenting cell (APC) subsets. Cell sorting was done on the FACSAria II or III. RNA sequencing was done on SF APC subsets. Proliferation assays were done on co-cultures after CD3 magnetic activated cell sorting (MACS). APC Toll-like receptor (TLR) stimulation was done using Pam3CSK4, Poly(I:C), LPS, CpG-A and R848. Cytokine production was measured by Luminex. Results: cDC1, a relatively small DC subset in blood, are strongly enriched in SF, and showed a quiescent immune signature without a clear inflammatory profile, low expression of pathogen recognition receptors (PRRs), chemokine and cytokine receptors, and poor induction of T cell proliferation and cytokine production, but selective production of IFNλ upon polyinosinic:polycytidylic acid exposure. In stark contrast, cDC2 and monocytes from the same environment, showed a pro-inflammatory transcriptional profile, high levels of (spontaneous) pro-inflammatory cytokine production, and strong induction of T cell proliferation and cytokine production, including IL-17. Although the cDC2 and monocytes showed an overlapping transcriptional core profile, there were clear differences in the transcriptional landscape and functional features, indicating that these cell types retain their lineage identity in chronic inflammatory conditions. Discussion: Our findings suggest that at the site of inflammation, there is specific functional programming of human DCs, especially cDC2. In contrast, the enriched cDC1 remain relatively quiescent and seemingly unchanged under inflammatory conditions, pointing to a potentially more regulatory role.


Assuntos
Artrite Juvenil , Artrite Reumatoide , Humanos , Líquido Sinovial , Células Dendríticas , Citocinas/metabolismo
6.
Cancers (Basel) ; 13(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34359719

RESUMO

Induction of long-lasting immunity by dendritic cells (DCs) makes them attractive candidates for anti-tumor vaccination. Although DC vaccinations are generally considered safe, clinical responses remain inconsistent in clinical trials. This initiated studies to identify subsets of DCs with superior capabilities to induce effective and memory anti-tumor responses. The use of primary DCs has been suggested to overcome the functional limitations of ex vivo monocyte-derived DCs (moDC). The ontogeny of primary DCs has recently been revised by the introduction of DC3, which phenotypically resembles conventional (c)DC2 as well as moDC. Previously, we developed a protocol to generate cDC2s from cord blood (CB)-derived stem cells via a CD115-expressing precursor. Here, we performed index sorting and single-cell RNA-sequencing to define the heterogeneity of in vitro developed DC precursors and identified CD14+CD115+ expressing cells that develop into CD1c++DCs and the remainder cells brought about CD123+DCs, as well as assessed their potency. The maturation status and T-cell activation potential were assessed using flow cytometry. CD123+DCs were specifically prone to take up antigens but only modestly activated T-cells. In contrast, CD1c++ are highly mature and specialized in both naïve as well as antigen-experienced T-cell activation. These findings show in vitro functional diversity between cord blood stem cell-derived CD123+DC and CD1c++DCs and may advance the efficiency of DC-based vaccines.

7.
Mol Ther Methods Clin Dev ; 21: 357-368, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33898633

RESUMO

Adoptive T cell therapy utilizing tumor-specific autologous T cells has shown promising results for cancer treatment. However, the limited numbers of autologous tumor-associated antigen (TAA)-specific T cells and the functional aberrancies, due to disease progression or treatment, remain factors that may significantly limit the success of the therapy. The use of allogeneic T cells, such as umbilical cord blood (CB) derived, overcomes these issues but requires gene modification to induce a robust and specific anti-tumor effect. CB T cells are readily available in CB banks and show low toxicity, high proliferation rates, and increased anti-leukemic effect upon transfer. However, the combination of anti-tumor gene modification and preservation of advantageous immunological traits of CB T cells represent major challenges for the harmonized production of T cell therapy products. In this manuscript, we optimized a protocol for expansion and lentiviral vector (LV) transduction of CB CD8+ T cells, achieving a transduction efficiency up to 83%. Timing of LV treatment, selection of culture media, and the use of different promoters were optimized in the transduction protocol. LentiBOOST was confirmed as a non-toxic transduction enhancer of CB CD8+ T cells, with minor effects on the proliferation capacity and cell viability of the T cells. Positively, the use of LentiBOOST does not affect the functionality of the cells, in the context of tumor cell recognition. Finally, CB CD8+ T cells were more amenable to LV transduction than peripheral blood (PB) CD8+ T cells and maintained a more naive phenotype. In conclusion, we show an efficient method to genetically modify CB CD8+ T cells using LV, which is especially useful for off-the-shelf adoptive cell therapy products for cancer treatment.

8.
Front Immunol ; 11: 559152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101274

RESUMO

Hematopoietic cell transplantation (HCT) is a last resort, potentially curative treatment option for pediatric patients with refractory acute myeloid leukemia (AML). Cord blood transplantation (CBT) results in less relapses and less graft-versus-host disease when compared to other sources. Nevertheless, still more than half of the children die from relapses. We therefore designed a strategy to prevent relapses by inducing anti-AML immunity after CBT, using a CB-derived dendritic cell (CBDC) vaccine generated from CD34+ CB cells from the same graft. We here describe the optimization and validation of good manufacturing practice (GMP)-grade production of the CBDC vaccine. We show the feasibility of expanding low amounts of CD34+ cells in a closed bag system to sufficient DCs per patient for at least three rounds of vaccinations. The CBDCs showed upregulated costimulatory molecules after maturation and showed enhanced CCR7-dependent migration toward CCL19 in a trans-well migrations assay. CBDCs expressed Wilms' tumor 1 (WT1) protein after electroporation with WT1-mRNA, but were not as potent as CBDCs loaded with synthetic long peptides (peptivator). The WT1-peptivator loaded CBDCs were able to stimulate T-cells both in a mixed lymphocyte reaction as well as in an antigen-specific (autologous) setting. The autologous stimulated T-cells lysed not only the WT1+ cell line, but most importantly, also primary pediatric AML cells. Altogether, we provide a GMP-protocol of a highly mature CBDC vaccine, loaded with WT1 peptivator and able to stimulate autologous T-cells in an antigen-specific manner. Finally, these T-cells lysed primary pediatric AML demonstrating the competence of the CBDC vaccine strategy.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Sangue Fetal/citologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Proteínas WT1/genética , Apresentação de Antígeno , Biomarcadores , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Citotoxicidade Imunológica , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Prognóstico , Recidiva , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento , Proteínas WT1/imunologia
9.
Cancers (Basel) ; 11(2)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764500

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells which instruct both the innate and adaptive immune systems. Once mature, they have the capacity to activate and prime naïve T cells for recognition and eradication of pathogens and tumor cells. These characteristics make them excellent candidates for vaccination strategies. Most DC vaccines have been generated from ex vivo culture of monocytes (mo). The use of mo-DCs as vaccines to induce adaptive immunity against cancer has resulted in clinical responses but, overall, treatment success is limited. The application of primary DCs or DCs generated from CD34⁺ stem cells have been suggested to improve clinical efficacy. Cord blood (CB) is a particularly rich source of CD34⁺ stem cells for the generation of DCs, but the dynamics and plasticity of the specific DC lineage development are poorly understood. Using flow sorting of DC progenitors from CB cultures and subsequent RNA sequencing, we found that CB-derived DCs (CB-DCs) exclusively originate from CD115⁺-expressing progenitors. Gene set enrichment analysis displayed an enriched conventional DC profile within the CD115-derived DCs compared with CB mo-DCs. Functional assays demonstrated that these DCs matured and migrated upon good manufacturing practice (GMP)-grade stimulation and possessed a high capacity to activate tumor-antigen-specific T cells. In this study, we developed a culture protocol to generate conventional DCs from CB-derived stem cells in sufficient numbers for vaccination strategies. The discovery of a committed DC precursor in CB-derived stem cell cultures further enables utilization of conventional DC-based vaccines to provide powerful antitumor activity and long-term memory immunity.

10.
J Allergy Clin Immunol ; 140(5): 1364-1377.e2, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28189772

RESUMO

BACKGROUND: Exposure to allergens, such as house dust mite (HDM), through the skin often precedes allergic inflammation in the lung. It was proposed that TH2 sensitization through the skin occurs when skin barrier function is disrupted by, for example, genetic predisposition, mechanical damage, or the enzymatic activity of allergens. OBJECTIVE: We sought to study how HDM applied to unmanipulated skin leads to TH2 sensitization and to study which antigen-presenting cells mediate this process. METHODS: HDM was applied epicutaneously by painting HDM on unmanipulated ear skin or under an occlusive tape. HDM challenge was through the nose. Mouse strains lacking different dendritic cell (DC) populations were used, and 1-DER T cells carrying a transgenic T-cell receptor reactive to Der p 1 allergen were used as a readout for antigen presentation. The TH2-inducing capacity of sorted skin-derived DC subsets was determined by means of adoptive transfer to naive mice. RESULTS: Epicutaneous HDM application led to TH2 sensitization and eosinophilic airway inflammation upon intranasal HDM challenge. Skin sensitization did not require prior skin damage or enzymatic activity within HDM extract, yet was facilitated by applying the allergen under an occlusive tape. Primary proliferation of 1-DER T cells occurred only in the regional skin-draining lymph nodes. Epicutaneous sensitization was found to be driven by 2 variants of interferon regulatory factor 4-dependent dermal type 2 conventional DC subsets and not by epidermal Langerhans cells. CONCLUSION: These findings identify skin type 2 conventional DCs as crucial players in TH2 sensitization to common inhaled allergens that enter the body through the skin and can provoke features of allergic asthma.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Fatores Reguladores de Interferon/metabolismo , Células de Langerhans/imunologia , Pele/imunologia , Animais , Apresentação de Antígeno , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Células Cultivadas , Cisteína Endopeptidases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pyroglyphidae/imunologia , Receptores de Antígenos de Linfócitos T/genética , Células Th2/imunologia
11.
Immunity ; 45(6): 1285-1298, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27939673

RESUMO

Allergic disease originates in early life and polymorphisms in interleukin-33 gene (IL33) and IL1RL1, coding for IL-33R and decoy receptor sST2, confer allergy risk. Early life T helper 2 (Th2) cell skewing and allergy susceptibility are often seen as remnants of feto-maternal symbiosis. Here we report that shortly after birth, innate lymphoid type 2 cells (ILC2s), eosinophils, basophils, and mast cells spontaneously accumulated in developing lungs in an IL-33-dependent manner. During the phase of postnatal lung alveolarization, house dust mite exposure further increased IL-33, which boosted cytokine production in ILC2s and activated CD11b+ dendritic cells (DCs). IL-33 suppressed IL-12p35 and induced OX40L in neonatal DCs, thus promoting Th2 cell skewing. Decoy sST2 had a strong preventive effect on asthma in the neonatal period, less so in adulthood. Thus, enhanced neonatal Th2 cell skewing to inhaled allergens results from postnatal hyperactivity of the IL-33 axis during a period of maximal lung remodeling.


Assuntos
Asma/imunologia , Interleucina-33/imunologia , Pulmão/crescimento & desenvolvimento , Pulmão/imunologia , Células Th2/imunologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipersensibilidade/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/imunologia , Transdução de Sinais/imunologia
12.
Immunity ; 45(3): 626-640, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27637148

RESUMO

Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the identity of terminally differentiated cells are designated "terminal selectors." Using BM chimeras, conditional Irf8(fl/fl) mice and various promotors to target Cre recombinase to different stages of monocyte and DC development, we have identified IRF8 as a terminal selector of the cDC1 lineage controlling survival. In monocytes, IRF8 was necessary during early but not late development. Complete or late deletion of IRF8 had no effect on pDC development or survival but altered their phenotype and gene-expression profile leading to increased T cell stimulatory function but decreased type 1 interferon production. Thus, IRF8 differentially controls the survival and function of terminally differentiated monocytes, cDC1s, and pDCs.


Assuntos
Diferenciação Celular/fisiologia , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição/metabolismo , Animais , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Regiões Promotoras Genéticas/fisiologia , Linfócitos T/metabolismo , Linfócitos T/fisiologia
13.
Biochim Biophys Acta ; 1862(2): 166-73, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26554605

RESUMO

Inflammatory Bowel Disease (IBD) is a multifactorial disorder involving dysregulation of the immune response and bacterial translocation through the intestinal mucosal barrier. Previously, we have shown that activation of the bile acid sensor Farnesoid X Receptor (FXR), which belongs to the family of nuclear receptors, improves experimental intestinal inflammation, decreasing expression of pro-inflammatory cytokines and protecting the intestinal barrier. Here, we aimed to investigate the immunological mechanisms that ameliorate colitis when FXR is activated. We analyzed by FACS immune cell populations in mesenteric lymph nodes (MLN) and in the spleen to understand whether FXR activation alters the systemic immune response. We show that FXR activation by obeticholic acid (OCA) has systemic anti-inflammatory effects that include increased levels of plasma IL-10, inhibition of both DSS-colitis associated decrease in splenic dendritic cells (DCs) and increase in Tregs. Impact of OCA on DC relative abundance was seen in spleen but not MLN, possibly related to the increased FXR expression in splenic DCs compared to MLN DCs. Moreover, FXR activation modulates the chemotactic environment in the colonic site of inflammation, as Madcam1 expression is decreased, while Ccl25 is upregulated. Together, our data suggest that OCA treatment elicits an anti-inflammatory immune status including retention of DCs in the spleen, which is associated with decreased colonic inflammation. Pharmacological FXR activation is therefore an attractive new drug target for treatment of IBD.


Assuntos
Colite/induzido quimicamente , Colite/imunologia , Células Dendríticas/imunologia , Sulfato de Dextrana , Receptores Citoplasmáticos e Nucleares/imunologia , Baço/imunologia , Animais , Quimiotaxia , Colite/patologia , Colo/citologia , Colo/imunologia , Colo/patologia , Células Dendríticas/patologia , Interleucina-10/imunologia , Masculino , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
14.
Biol Blood Marrow Transplant ; 22(2): 195-206, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26341398

RESUMO

Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into a potent curative treatment option for a variety of malignant and nonmalignant diseases. The occurrence of complications and mortality after allo-HCT is, however, still high and is strongly associated with immune reconstitution (IR). Therefore, detailed information on IR through immunomonitoring is crucial to improve survival chances after HCT. To date, information about the reconstituting immune system after allo-HCT in pediatric patients is mostly derived from routine standard-of-care measurements. More profound knowledge on IR may provide tools to better predict and modulate adverse reactions and, subsequently, improve survival chances. Here, we provide an overview of IR (eg, immune cell subsets and circulating chemokines/cytokines) after allo-HCT in children, taking into account different cell sources and serotherapy, and discuss strategies to enhance immunomonitoring. We conclude that available IR data after allo-HCT contain limited information on immune cell families (mostly only generic T, B, and NK cells), which would improve with more detailed information on reconstituting cell subsets or effector cell functionality at earlier time points (<1 month). In addition, secretome data (eg, multiplex cytokine/chemokine profiles) could add to the understanding of IR mechanisms and cell functionality and may even provide (early) biomarkers for individual disease outcome, such as viral reactivity, graft-versus-host disease, or graft-versus-leukemia. The present data and suggestions for more detailed, standardized, and harmonized immunomonitoring in future (pediatric) allo-HCT studies will pave the path to "precision transplantation:" an individualized HCT approach (including conditioning), based on detailed information on IR and biomarkers, aiming to reduce transplantation related mortality and relapse, and subsequently improve survival chances.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Imunização Passiva/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Biomarcadores , Criança , Pré-Escolar , Humanos , Fatores de Risco
15.
Oncoimmunology ; 4(11): e1023973, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26451309

RESUMO

The poor survival rates of refractory/relapsed acute myeloid leukemia (AML) patients after haematopoietic cell transplantation (HCT) requires the development of additional immune therapeutic strategies. As the elicitation of tumor-antigen specific cytotoxic T lymphocytes (CTLs) is associated with reduced relapses and enhanced survival, enhanced priming of these CTLs using an anti-AML vaccine may result in long-term immunity against AML. Cord blood (CB), as allogeneic HCT source, may provide a unique setting for such post-HCT vaccination, considering its enhanced graft-versus-leukemia (GvL) effects and population of highly responsive naïve T cells. It is our goal to develop a powerful and safe immune therapeutic strategy composed of CB-HCT followed by vaccination with CB CD34+-derived dendritic cells (DCs) presenting the oncoprotein Wilms Tumor-1 (WT1), which is expressed in AML-blasts in the majority of patients. Here, we describe the optimization of a clinically applicable DC culture protocol. This two-step protocol consisting of an expansion phase followed by the differentiation toward DCs, enables us to generate sufficient cord blood-derived DCs (CBDCs) in the clinical setting. At the end of the culture, the CBDCs exhibit a mature surface phenotype, are able to migrate, express tumor antigen (WT1) after electroporation with mRNA encoding the full-length WT1 protein, and stimulate WT1-specific T cells.

16.
PLoS One ; 9(8): e105353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157414

RESUMO

Juvenile dermatomyositis (JDM) is an immune-mediated inflammatory disease affecting the microvasculature of skin and muscle. CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) are key regulators of immune homeostasis. A role for Tregs in JDM pathogenesis has not yet been established. Here, we explored Treg presence and function in peripheral blood and muscle of JDM patients. We analyzed number, phenotype and function of Tregs in blood from JDM patients by flow cytometry and in vitro suppression assays, in comparison to healthy controls and disease controls (Duchenne's Muscular Dystrophy). Presence of Tregs in muscle was analyzed by immunohistochemistry. Overall, Treg percentages in peripheral blood of JDM patients were similar compared to both control groups. Muscle biopsies of new onset JDM patients showed increased infiltration of numbers of T cells compared to Duchenne's muscular dystrophy. Both in JDM and Duchenne's muscular dystrophy the proportion of FOXP3+ T cells in muscles were increased compared to JDM peripheral blood. Interestingly, JDM is not a self-remitting disease, suggesting that the high proportion of Tregs in inflamed muscle do not suppress inflammation. In line with this, peripheral blood Tregs of active JDM patients were less capable of suppressing effector T cell activation in vitro, compared to Tregs of JDM in clinical remission. These data show a functional impairment of Tregs in a proportion of patients with active disease, and suggest a regulatory role for Tregs in JDM inflammation.


Assuntos
Dermatomiosite/imunologia , Fatores de Transcrição Forkhead/análise , Músculos/patologia , Linfócitos T Reguladores/imunologia , Adolescente , Criança , Pré-Escolar , Dermatomiosite/sangue , Dermatomiosite/patologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Humanos , Lactente , Masculino , Músculos/imunologia , Linfócitos T Reguladores/patologia
17.
Front Immunol ; 5: 218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904573

RESUMO

Hematopoietic cell transplantation (HCT) is a last treatment resort and only potentially curative treatment option for several hematological malignancies resistant to chemotherapy. The induction of profound immune regulation after allogeneic HCT is imperative to prevent graft-versus-host reactions and, at the same time, allow protective immune responses against pathogens and against tumor cells. Dendritic cells (DCs) are highly specialized antigen-presenting cells that are essential in regulating this balance and are of major interest as a tool to modulate immune responses in the complex and challenging phase of immune reconstitution early after allo-HCT. This review focuses on the use of DC vaccination to prevent cancer relapses early after allo-HCT. It describes the role of host and donor-DCs, various vaccination strategies, different DC subsets, antigen loading, DC maturation/activation, and injection sites and dose. At last, clinical trials using DC vaccination post-allo-HCT and the future perspectives of DC vaccination in combination with other cancer immunotherapies are discussed.

18.
Clin Transl Allergy ; 4(1): 12, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24735802

RESUMO

Allergic sensitization is the outcome of a complex interplay between the allergen and the host in a given environmental context. The first barrier encountered by an allergen on its way to sensitization is the mucosal epithelial layer. Allergic inflammatory diseases are accompanied by increased permeability of the epithelium, which is more susceptible to environmental triggers. Allergens and co-factors from the environment interact with innate immune receptors, such as Toll-like and protease-activated receptors on epithelial cells, stimulating them to produce cytokines that drive T-helper 2-like adaptive immunity in allergy-prone individuals. In this milieu, the next cells interacting with allergens are the dendritic cells lying just underneath the epithelium: plasmacytoid DCs, two types of conventional DCs (CD11b + and CD11b-), and monocyte-derived DCs. It is now becoming clear that CD11b+, cDCs, and moDCs are the inflammatory DCs that instruct naïve T cells to become Th2 cells. The simple paradigm of non-overlapping stable Th1 and Th2 subsets of T-helper cells is now rapidly being replaced by that of a more complex spectrum of different Th cells that together drive or control different aspects of allergic inflammation and display more plasticity in their cytokine profiles. At present, these include Th9, Th17, Th22, and Treg, in addition to Th1 and Th2. The spectrum of co-stimulatory signals coming from DCs determines which subset-characteristics will dominate. When IL-4 and/or IL-13 play a dominant role, B cells switch to IgE-production, a process that is more effective at young age. IgE-producing plasma cells have been shown to be long-lived, hiding in the bone-marrow or inflammatory tissues where they cannot easily be targeted by therapeutic intervention. Allergic sensitization is a complex interplay between the allergen in its environmental context and the tendency of the host's innate and adaptive immune cells to be skewed towards allergic inflammation. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute.

19.
PLoS One ; 8(10): e78461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194936

RESUMO

Respiratory syncytial virus (RSV) bronchiolitis triggers a strong innate immune response characterized by excessive neutrophil infiltration which contributes to RSV induced pathology. The cytokine IL-17A enhances neutrophil infiltration into virus infected lungs. IL-17A is however best known as an effector of adaptive immune responses. The role of IL-17A in early immune modulation in RSV infection is unknown. We aimed to elucidate whether local IL-17A facilitates the innate neutrophil infiltration into RSV infected lungs prior to adaptive immunity. To this end, we studied IL-17A production in newborns that were hospitalized for severe RSV bronchiolitis. In tracheal aspirates we measured IL-17A concentration and neutrophil counts. We utilized cultured human epithelial cells to test if IL-17A regulates RSV infection-induced IL-8 release as mediator of neutrophil recruitment. In mice we investigated the cell types that are responsible for early innate IL-17A production during RSV infection. Using IL-17A neutralizing antibodies we tested if IL-17A is responsible for innate neutrophil infiltration in mice. Our data show that increased IL-17A production in newborn RSV patient lungs correlates with subsequent neutrophil counts recruited to the lungs. IL-17A potentiates RSV-induced production of the neutrophil-attracting chemokine IL-8 by airway epithelial cells in vitro. Various lung-resident lymphocytes produced IL-17A during early RSV infection in Balb/c mice, of which a local population of CD4 T cells stood out as the predominant RSV-induced cell type. By removing IL-17A during early RSV infection in mice we showed that IL-17A is responsible for enhanced innate neutrophil infiltration in vivo. Using patient material, in vitro studies, and an animal model of RSV infection, we thus show that early local IL-17A production in the airways during RSV bronchiolitis facilitates neutrophil recruitment with pathologic consequences to infant lungs.


Assuntos
Imunidade Inata/imunologia , Interleucina-17/imunologia , Infiltração de Neutrófilos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Sistema Respiratório/imunologia , Animais , Anticorpos Neutralizantes , Citometria de Fluxo , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real
20.
PLoS One ; 8(3): e59822, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527272

RESUMO

It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-ß or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-ß signaling inhibitor or neutralizing anti-TGF-ß was added, demonstrating the involvement of RA and TGF-ß in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Toxina da Cólera/farmacologia , Células Dendríticas/metabolismo , Imunoglobulina A/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Tretinoína/metabolismo , Análise de Variância , Animais , Linfócitos B/metabolismo , Técnicas de Cultura de Células , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA